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A formulation of quantum statistical ensembles in terms of probability distributions on a pro-
jective Hilbert space is developed. The combination of statistically independent systems and the
reduction of a system to one of its subsystems are described by means of a tensor product of
probability distributions and a reduction formula for the reduced probability distribution. Within
this framework the dynamics of open quantum systems is investigated starting from a microscopic
system-plus-reservoir model. Employing the Markov approximation of the classical theory of stochas-
tic processes the short time behavior of the conditional transition probability is derived and shown
to yield a differential Chapman-Kolmogorov equation. The latter has the form of a Liouville master
equation for the reduced probability distribution of the open quantum system. Thus it is shown
that the time-dependent wave function of an open quantum system represents a well-defined and
unique stochastic process in the space of rays of the underlying Hilbert space. This stochastic pro-
cess consists of a continuous time evolution generated by a nonlinear Schréodinger equation and a
discontinuous jump process; the realizations of the processes correspond to those of the Monte Carlo
wave function simulation method and to those of the jump-type evolution of the quantum trajec-
tory method. The quantum master equation for the statistical operator is derived as the equation
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I. INTRODUCTION

The classical theory of probability and stochastic pro-
cesses [1] provides powerful tools for the description of
classical complex dynamical systems [2-6]. In this con-
text, the variables of the system under study are con-
sidered as random variables, the time evolution of which
is represented by a stochastic process. The latter is ob-
tained either from phenomenological models or by ap-
plying various approximation schemes to the underlying
microscopic theory.

In view of the great success of these stochastic meth-
ods it is natural to try a similar ansatz for the theoretical
description of open quantum systems. In fact, there ex-
ist several approaches in the literature that exploit the
methods of the theory of stochastic processes for the for-
mulation of damping and fluctuations in open quantum
systems [7-9]. Since the state of a quantum system con-
taining all accessible information is represented by a wave
function of the underlying Hilbert space, the most natu-
ral way to combine the methods of classical probability
theory with the particular structure of quantum mechan-
ics is to consider the wave function as a random vector in
Hilbert space. The time evolution of the wave function is
then represented as a stochastic process. This approach
has been followed by several authors on phenomenologi-
cal grounds. Basically, one may distinguish two classes of
models. In the first class the stochastic wave function is
described by means of stochastic Schrodinger-type equa-
tions. Particularly interesting in this context is the quan-
tum state diffusion model first proposed by Gisin [10] and
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developed further by Gisin and Percival [11]. The dy-
namic equation of the quantum state diffusion model is a
nonlinear stochastic Schrédinger-type equation which in
turn is equivalent to a certain functional Fokker-Planck
equation for the corresponding probability distribution
on Hilbert space [12]. The second class of models consid-
ers stochastic jump processes that are defined in terms of
algorithms by which realizations of the stochastic process
are generated. This so-called Monte Carlo wave func-
tion simulation method has been proposed by Dalibard,
Castin, and Mglmer [13]. A related method has been
formulated a short time later by Dum, Zoller, and Ritsch
[14] (see also Ref. [15]). Independently, the same method
has been developed by Carmichael and co-workers [16,17]
under the name “quantum trajectory” method. Recently,
a different phenomenological jump process has been for-
mulated in terms of a Liouville master equation for the
corresponding probability distribution [18].

It is important to realize that introducing a random
wave function in Hilbert space amounts to defining a
probability distribution on Hilbert space. A mathemat-
ically rigorous formulation of probability measures on
Hilbert space can be found in Ref. [19]. The introduction
of a probability distribution on Hilbert space can be mo-
tivated by considering the ensemble definition of the sta-
tistical operator. Suppose we have given a quantum me-
chanical system S and an ensemble consisting of a large
number N of identical copies of this system. According to
quantum mechanics each member of the ensemble can be
described by a normalized wave function %(*)(z) in the
underlying Hilbert space, where k € {1,2,..., N} labels
the different member systems. The statistical operator p
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(in the position representation) can then be introduced
as the mean value of the quantity ¥ (z)y*(z'), i.e., we
may define (see, e.g., [20,21])

1 N
pla,a’) = 5 D v @ (@)™ () . (1)

k=1

On the basis of this definition one is immediately led to
represent the above ensemble by a probability distribu-
tion P[y] on Hilbert space, which enables one to interpret
the right-hand side of Eq. (1) as the statistical estimate
of the expectation value (¢ (z)y*(z')), where the angu-
lar brackets denote an integral over Hilbert space, with
the corresponding probability measure. In this way, the
particular structure of quantum mechanics is combined
with classical probability theory. Introducing a proba-
bility distribution on Hilbert space, the wave function
becomes a stochastic variable, that is, a random vector in
Hilbert space, and the statistical operator is interpreted
as the two-point correlation function. This interpretation
is the basis of the aformentioned stochastic approaches
that rely on the unraveling [17] of the quantum master
equation for the reduced density operator [7,8] in terms
of stochastic wave functions.

The central goals of the present paper can be de-
scribed as follows. First, we are going to elaborate in
detail the implications of the above ansatz and develop
a general framework for the analysis of quantum ensem-
bles in terms of probability distributions on projective
Hilbert space. Second, we shall investigate within this
framework the description of the dynamics of an open
quantum system by means of a stochastic process in pro-
jective Hilbert space. The stochastic dynamics of the
state vector is obtained from a microscopic system-plus-
reservoir model by deriving within the Markov approx-
imation the differential Chapman-Kolmogorov equation
for the reduced probability distribution on the Hilbert
space of the open system [22,23]. It is shown that the
differential Chapman-Kolmogorov equation is a Liouville
master equation. This means that the time-dependent
wave function represents a stochastic process in projec-
tive Hilbert space that consists of a continuous time evo-
lution according to the Liouville part and a discontinuous
jump process defined by a gain-and-loss balance equation
for the probability distribution.

It is important to note that the derivation of the
stochastic process for the open system wave function
relies on physical assumptions similar to those of the
derivation of the quantum master equation for the re-
duced density operator; see, e.g., Refs. [7,8]. However,
the derivation is performed completely within the frame-
work of classical probability theory. Thus this derivation
solely deals, right from the beginning, with ensembles of
pure states (rays in projective Hilbert space) and there-
fore does not require the a priori knowledge of the quan-
tum master equation for the reduced density operator.

The material of this paper is presented as follows. In
Sec. II we formulate the general concepts for the descrip-
tion of quantum systems by means of probability distri-
butions on Hilbert space. In Sec. II A we make more
precise the idea of probability distributions on Hilbert
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space. According to the principles of quantum mechan-
ics, we only consider probability distributions that are
concentrated on the unit sphere in Hilbert space and that
do not depend upon the phase of the wave function. Thus
these distributions can be regarded as probability distri-
butions on the space of rays, that is, on projective Hilbert
space. We then consider the dynamics of closed systems
and derive the Liouville equation, which is a functional
equation of motion for the probability distribution. Fur-
thermore, we introduce the interaction representation of
the probability distribution and deduce the correspond-
ing Liouville equation. Section IIB contains the deriva-
tion of two basic prescriptions: The first one defines a
kind of tensor product of probability distributions, which
enables us to determine the probability distribution of a
quantum system that is composed of two statistically in-
dependent subsystems. The second prescription tells us
how to obtain from a given probability distribution the
reduced distribution of one of its subsystems.

The concepts developed in Sec. II enable us to study
the dynamics of open quantum systems. Section III
contains the derivation of the differential Chapman-
Kolmogorov equation for the reduced system dynamics.
To this end, the open system under study is coupled to an
external heat bath. In order to simplify the presentation
the coupling is assumed to be of the form A ® B, where
A and B denote self-adjoint system and bath operators,
respectively. In Sec. IIIA we give a detailed exposi-
tion of the procedure of the derivation. Furthermore, we
precisely state the Markov approximation and the corre-
sponding physical conditions. Section III B contains the
derivation of the short time behavior of the conditional
transition probability of the Markov process in second-
order perturbation theory. This short time behavior im-
mediately leads to the differential Chapman-Kolmogorov
equation, which is the central result of this paper.

Since the material presented in Sec. IIIB is rather
technical we have devoted Sec. IV to a detailed dis-
cussion of the physical meaning and the implications of
the Liouville master equation. We demonstrate in Sec.
IV that the Liouville master equation defines, in fact, a
stochastic process on projective Hilbert space of the open
system and we deduce the quantum master equation for
the statistical operator as the equation of motion of the
two-point correlation function of the stochastic process.

Finally, we summarize our results in Sec. V. In the
Appendix we prove two equations, which are required in

Sec. III B.

II. DESCRIPTION OF QUANTUM ENSEMBLES
BY PROBABILITY DISTRIBUTIONS
ON HILBERT SPACE: GENERAL CONCEPTS

In this section we develop the general framework for
the description of quantum systems in terms of probabil-
ity distributions on Hilbert space. Section IT A is mainly
devoted to the definition of distributions on projective
Hilbert space and the derivation of the Liouville equation
for closed systems in the Schrédinger and the interaction
representation. In Sec. IIB we formulate the combina-
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tion of two systems and the reduction of a system to a
subsystem in the language of probability distributions on
Hilbert space.

A. Probability distributions on Hilbert space

In this subsection we study a closed quantum me-
chanical system S, the states of which are described by
wave functions ¢ from some Hilbert space 1. We write
¥ = 9(x), where x represents a complete set of position
coordinates and further quantum numbers for the inter-
nal degrees of freedom. Accordingly, the integral over
z is understood to be an integral over the configuration
space of the system and a sum over the quantum numbers
referring to the internal degrees of freedom. The scalar
product on # is written as

() = / dz * () (x) 2)

and the corresponding norm is denoted by |[|¢|| =
(B[)1/2.

We consider an ensemble that consists of a large num-
ber of copies of the system S each member of which is
described by its own wave function. This ensemble can
be characterized by a probability distribution on Hilbert
space H in the following way. The functional volume
element on H is defined by

DyDy* = [[ d(Reys(2))d(Imy (=)
=] s (@dw (=) (3)

where Ret)(z) and Imy(z) are the real and the imaginary
part of ¥(x), respectively. The probability density P[v]
corresponding to the above ensemble can then be intro-
duced by defining P[¢]DyDy* to be the probability of
finding the system in the volume element D D* around
1. It should be clear that in the case of an infinite-
dimensional Hilbert space P[1] is a functional on Hilbert
space and (3) is a functional measure. In this paper we
leave aside all mathematical questions concerning the ex-
istence of such probability measures. Instead, we adopt
a pragmatic point of view and always assume that the
underlying Hilbert space is or can be approximated by a
finite-dimensional subspace H,, of any dimension n.

It is important to note that the measure (3) is invariant
with respect to linear unitary transformations U : H —
H. This fact is expressed by the equation

S[UY) = 8[4] , (4)

where

8[w(2)] = [ 6(Rets(2))6 (Imej (<)) (5)

denotes the functional § function on the Hilbert space
H [6() is the ordinary delta function]. According to the
general principles of quantum mechanics, the physical
state of a system .S is completely described by a normal-
ized wave function and wave functions that differ by a
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phase factor are equivalent. It is thus natural to impose
the following restrictions on the probability distribution

P[]

(i) P is normalized
[pvpvpi=1 (6)

(ii) The probability distribution is concentrated on the
unit sphere in Hilbert space defined by (¢|¢) = ||¢||2 =
1. This condition can be expressed by demanding that
there exists a functional Q[y] such that

Pyl = s(ll9ll - 1)Q¥] - (7)

(iii) The probability distribution does not depend upon
the phase of the wave function, i.e., we have for all x € R

Ple™y] = P[y] . (8)

It is important to note that conditions (7) and (8) imply
that P[] can, in fact, be regarded as a probability den-
sity on the space of rays, that is, as a probability density
on projective Hilbert space.

Having defined a probability distribution on Hilbert
space, the expectation value of a functional F'[¢] is given
by

(F) = / DyDy*Fly|Ply] . 9)

In particular, the expectation value of a physical observ-
able represented by a self-adjoint operator A is defined
by the ensemble average of the quantum mechanical ex-
pectation value:

(4) = (($lA19))
= [ DvDy: / de ¢*(2)Ap()PlY] . (10)

Equivalently, one can introduce the statistical operator
as the two-point correlation function

(W(2)y*(2"))
- / Dy Dy*(z)y* (z') P[] (11)

p(z,z’)

and write Eq. (10) as

(4) = tr(4p) (12)

in accordance with the quantum mechanical expression.

It should be clear at this stage that the space of proba-
bility distributions that fulfill properties (6)—(8) is much
larger than the space of statistical operators, i.e., than
the space of Hermitian and positive operators of trace
one. We therefore need a prescription that provides the
connection of the above formulation to the usual formu-
lation of quantum ensembles in terms of statistical opera-
tors. To this end, we construct a correspondence between
statistical operators and a certain type of probability dis-
tributions on Hilbert space. Assume that the ensemble
has been prepared in a state that is described, according
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to the rules of quantum mechanics, by means of a nor-
malized statistical operator p. In the most general case,
the spectral decomposition of p can be written

pP= Z Xﬂ:pnl‘pn,i)<‘ﬂn,i| ’ (13)

n =1

Pa>0, 3 D pa=1, (Pnilom;) =nmbi; . (14)

n =1

Whereas the index n labels the different s,,-dimensional
eigenspaces V,, of p, the index ¢ labels the basis vec-
tors that span these eigenspaces, i.e., we have V,, =
span{¥n,1,¥n,2,---1¥n,s.}- A natural choice for the
probability distribution P[¢] on H is then given by [18]

PR = Y pe i L () 8l = 2] - (15)

Writing this equation we have introduced the (2s,, — 1)-
dimensional unit spheres K, = {®,(A)}, where

(X)) =D Xipni, MEC, D [ ANP=1 . (16)
=1 =1

Furthermore, dw,(A) denotes the volume element on K,
and |K,| is the total volume of K,. Thus we see that
the probability distribution P[¢] as given by Eq. (15) is
concentrated on the unit spheres K,, C V,, and that it
is constant on each of these spheres. Note that the inte-
gration over the spheres K, in Eq. (15) ensures that the
probability distribution does not depend on the choice
of basis functions within the degenerate subspaces V,,.
Physically, the integral over the spheres K,, corresponds
to a statistical mixture of all normalized states in V,, with
equal weights [24]. In the special case of a nondegenerate
statistical operator

p=> palon){enl (17)

Eq. (15) takes the form

dx5

2m

0 ) (¥ — eiX‘Pn} . (18)

Pyl =) pn /
Obviously, the probability distribution (15) fulfills the
basic properties (6)—(8). Moreover, for the distribu-

tion (15) the expectation value of any self-adjoint op-
erator A is given by

)= [DoDv [ do i (@ av(a)
xzpnl;{—';'/x dwa(N) 8] — B, ()] . (19)

Performing the integration over v yields

(4) =2njpnl?’;~| A dun () (@ (V] 4120 (V) - (20)
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Employing Eq. (16) this is seen to be equal to

(W) =33 palenildlon) = tr(4p) . (21)

n i=1

We now turn to the description of the dynamics. We
require that for the closed quantum system under consid-
eration each member of the ensemble evolves according
to the Schrédinger equation

.0Y

ig = HY (22)
where H is the Hamiltonian of the system, and choosing
appropriate units we have assumed # = 1. Introducing
an initial probability distribution Po[+] that describes the
initial state of the ensemble, ¥ becomes a special kind of
stochastic Markov process that is governed by a Liou-
ville equation. Denoting the time-dependent probability
distribution by P = P[1,t] we write

P, = / DeoD¥3 Sle~Htepo — Y] Potbo] . (23)

This equation expresses that any initial o drawn
from the initial distribution P, evolves according to
Schrodinger’s equation. In other words, the conditional
transition probability dle~*H(t2=t1)q); — 4),] is non-zero
if and only if %2 evolves from 1; according to the
Schrédinger equation within the time interval from t; to
to. Using (4) we obtain from Eq. (23) by integrating over
%o

Ply,t] = RP[U(8)y] , (24)

where U(t) = exp{—iHt} is the time-evolution operator.
Differentiating (24) with respect to time and using the
fact that H is self-adjoint yields the differential form of
the Liouville equation, which is a first-order functional
equation for the probability distribution:

d . §P o) — o (o) H —F
&P['d),t]—l/.dar{é.w(x)H'l/’( ) ¥ ( )H(S’(/J*(:E)}’

(25)

where 6/0¢(z) and 6/6¢*(x) are functional Wirtinger
derivatives. Since the linear time-evolution operator U ()
is unitary, it is easily seen that the Liouville equation (25)
preserves the basic conditions (6)—(8), i.e., if Py[9] is
a probability density on projective Hilbert space so is
P[4, t] for all ¢ > 0. Moreover, the ensemble average (10)
obeys the equation of motion

d .
A =«H A]) , (26)

which is identical to the corresponding equation in quan-
tum mechanics. If the statistical operator is diagonal
in the energy representation the probability distribu-
tion (15) is a stationary solution of the Liouville equa-
tion (25).

Another concept that will be important in the follow-
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ing sections is the interaction representation of the time-
dependent probability distribution on Hilbert space. In
order to derive the equation of motion in the interaction
picture we write

H=H,+Hy , (27)

where Hj is the unperturbed part of the Hamiltonian and
Hj denotes the interaction Hamiltonian. We define the
probability distribution P[i,¢] in the interaction repre-
sentation by

Py,
At time t = to the Schrédinger and the interaction rep-
resentation coincide, that is, we have P[i,to] = P[1,to]-

On differentiating Eq. (28) with respect to time and using
the Liouville equation for P[y,t] [Eq. (25)] one finds

S Pt =i [ o St
" @) Hr (1)

= Ple Holt—to)y, 4] | (28)

w()} (29)

where
Hi(t) = etHo(t—to) f o —iHo(t—to) (30)

is the interaction Hamiltonian in the interaction repre-
sentation. The general solution of Eq. (29) takes the
form

Py, t] = P[{Us(t,to) Y14, t0] (31)

where Ur(t,to) is the time-evolution operator in the in-
teraction picture.

Finally, we mention that if G is a transformation group
acting on H by unitary transformations U(g), g € G, the
probability distribution P transforms like a scalar,

P'[y] = P[U(9)y] . (32)

Invoking the invariance of the measure with respect to
unitary transformations it follows that

P =U@)"eU(g) , (33)

as it must be according to the general principles of quan-
tum mechanics.

B. Composition and reduction of systems

This subsection is devoted to a detailed discussion
of two basic constructions that enable us to deal with
the combination of statistically independent systems and
with the reduced description in terms of a reduced prob-
ability distribution. The considerations presented in this
section are needed for the derivation of the reduced sys-
tem dynamics, which will be given in Sec. III.

The physical situation we have in mind is the following
one. Suppose that we have two systems S; and Sy with
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corresponding Hilbert spaces H; and H,. Wave functions
in H; are written as ; (z1) and wave functions in H, are
denoted by %3(x2). Furthermore, throughout the paper
(unless stated otherwise) we use the convention that all
quantities that refer to system S; carry an index ¢, where
i = 1,2. For example, (| )2 denotes the scalar product on
Hz and || ||1 is the norm in #;. According to the general
principles of quantum mechanics, the Hilbert space #
underlying the combined system S = S; + Sz is given by
the tensor product

H=H,®Hs . (34)

Two questions then arise.

(i) Given two probability distributions P;[¢;] and
P,[1)2] for the respective systems Sy and S», what is the
probability distribution for the combined system S on
the Hilbert space H if the two systems are considered to
be statistically independent?

(ii) Given a probability distribution P[] on the
Hilbert space H for the combined system, what is the
probability distribution P;[¢] for the subsystem S; that
enables us to determine expectation values for those ob-
servable that refer to S;7

In order to answer the first question we consider the
case that S; and S; are in pure states represented by
wave functions 1¥; and s, respectively. Quantum me-
chanics tells us that in this case S is also in a pure state
represented by a wave function 1, which is the product
of the wave functions of the subsystems

Y(z1, x2) = Y1(21)Y2(22) - (35)

According to our general prescriptions [see Eq. (18)] this
pure state can be represented by a probability distribu-
tion on #, which is given by (we ignore phase factors for
a moment)

P[] = 8[¢ — ¢1¢p2] . (36)

The general case is obtained by averaging over ; and
over o with the corresponding probability distributions.
Thus we define a tensor product

P=P QP (37)

of the probability distributions of the subsystems S; and
S2 by means of the equation

P[y] = (P1 ® P;)[v] (38)
= /Di/uD@bI /DT/J2D¢§ 8[ — P11ba]
X Py [11] P [42).

It follows immediately from this expression that for any
self-adjoint operator A on H of the form A = A4; ® A,
the following equation holds:

(A1)p,(A2)p, (39)

where the probability distributions by which the differ-

(A>P1 QP =
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ent expectation values are defined have been indicated
as indices of the angular brackets. Equation (39) means
that for statistically independent systems S; and S, the
expectation value in the combined system S of any prod-
uct of operators is equal to the product of the expectation
values of S; and S3. In order to prove Eq. (39) we in-
sert the definition (38) for the tensor product into the
expression (10) for the expectation value of A to obtain

(A rer = [ DvDy* [ DuDu; [ DD (wiAlw)
X8 — Y1) P[] Pa[t2] (40)

On integrating over ¢ we find

(A)piors = / D DY} / Dy DY
X<1/’11/)2|A1 ® A2|¢11/’2)P1[1/)1]P2[¢2]
_ ( / Dy DY} <¢1|A11¢1>1P1[¢1])

y ( [ pa; <¢2|A2|¢2>2P2[¢21) ,

which obviously yields Eq. (39).

Let us check whether the basic conditions (6)—(8) are
fulfilled for the tensor product. First, condition (6) fol-
lows from Eq. (39) by setting A; = A; = 1, where 1
denotes the identity operator on the respective Hilbert
spaces. Condition (7) is obvious from the fact that P[]
is nonzero only if ¢ is the product of two normalized wave
functions. Finally, also condition (8) is fulfilled since on
using (4) for the unitary transformation given by the mul-
tiplication with the phase factor exp(ix) we obtain

Pley] = [ DunDut [ DvaDi;
X8[th — e~ X105 Py [11] Palipa]
~ [ DuDv; [ DuaD;
X8[Yp — Y192 Pr[e ™41 Pa[¢p2]

and thus P[¢] is phase invariant if P;[t)4] is so.

Let us now turn to question (ii) above. In order to
construct a probability distribution for the reduced sub-
system on #; from a distribution on H we first consider
the case of a pure state ¢» € H. According to quan-
tum mechanics, the reduced statistical operator for the
system S; is obtained by tracing over the states of the
unobserved system Ss:

p1 = tr2l)(¥] = Y (Pal¥)2(¥|ea):

- w (alt)2 (¥|ea)2

o , (41)
wl/? W2

(a2

where {4} is a complete orthonormal basis of H, and
we have defined

we = / o1 [(0alt)2]? = |[{palt)all? - (42)

Note that the expression wgl/z(%]w)z represents a nor-
malized state in H;. The mixed state described by
p1 translates according to our general prescription [see
Eq. (18)] into the probability distribution on #; given
by (again ignoring phase factors for a moment)

Pili] =Y wabifwy*paltp)2 — 9] (43)

where §;[] denotes the functional delta function on H;.
Thus we have constructed P; for the case that S is in
the pure state 1. The general case is obtained by aver-
aging the right-hand side of Eq. (43) over the probability
distribution P[¢]. Therefore, we define the reduced prob-
ability distribution on H; by means of the equation

Pi[] = /D¢DT/’* Zwaél[w;1/2<‘ﬁa|¢>2 — 1] P[Y]

(44)

Again, it is easy to check that the basic conditions (6)—
(8) are fulfilled. Furthermore, we have for any operator
A1 on Hl

(A)p, = (A1 ®@1)p . (45)

To prove this relation one only has to employ the com-
pleteness (in Hz) of the basis {pa}.

We close this section by investigating the following con-
sistency condition of our equations for the tensor product
[Eq. (38)] of probability distributions and the reduced
distribution [Eq. (44)]. Suppose that we have given two
distributions P; and P, on their respective Hilbert spaces
and that we form the tensor product P = P; ® Py ac-
cording to Eq. (38). Applying then Eq. (44) we obtain a
reduced probability distribution on #;, which is denoted
by P;. The consistency condition then is that Pj is equal
to the original distribution P; on #;. In order to prove
this we write Py in terms of P; and P, applying Egs. (38)
and (44):

Pllin] = [ D6DU" 3 wabfuz*(palt)e = ]
< [ DiDit [ DiDY;
X8 — 12| P1[th1] Pa[92]
On integrating over ¥ we find
Pl = [ DhD¥; [ DE:DY;
X Zwa61 [w;1/2<§0al¢~11;2>2 — 1]
X Py [1] Py )], (46)
where

Wo = /d$1|(<Pa|1/~’11/~12>2|2
= |[$1]13{palP2)2]? = [(pald2)2|? . (47)
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Thus we have
Piwr] = [ D303 [ DEDI; S waliaal?

(‘Pa!'llz)g ~ . )
51 VL 2 R 2 Pl 1] P2 [2].
" [l(‘Pa]T/Jz)ﬂd) ¥ } [¥1]P2[t2].  (48)

Since the factor in front of 1/71 within the argument of the
6 functional is a pure phase factor, we obtain, in view of
the phase invariance of P,

P = [ D30T} [ DEDI; Y galdaal?
x81[1 — Y1) Pi[41] Pa[2] - (49)

The sum over « in front of the é functional is equal to 1
and hence we find, due to the normalization of P,

P[] = / DD: 5[ — ] Pidha] = Puab]
(50)

as required. Thus we have shown that on applying the
reduction formula (44) to the tensor product (38) of two
probability distributions the original distribution P; is
recovered.

III. DERIVATION OF THE DIFFERENTIAL
CHAPMAN-KOLMOGOROV EQUATION
FOR THE REDUCED SYSTEM DYNAMICS

In the preceding section we have formulated the general
concepts for the description of an ensemble of quantum
mechanical systems in terms of probability distributions
on the underlying Hilbert space. These concepts now en-
able us to derive an equation of motion for the reduced
probability distribution pertaining to a system that is
coupled to an external heat bath. The physical situation
under consideration is similar to that considered in Sec.
IIB. The system S; (Hilbert space H;, wave functions
91) is considered to be the system of interest (simply re-
ferred to as the system), whereas S, (Hilbert space Ha,
wave functions 5) is the external heat bath. The Hamil-
tonian H of the combined system S acting on the Hilbert
space H = H; ® H, is written as

H = H() + H[ y (51)
where Hj is the interaction Hamiltonian and
Ho=H,®1+1Q H, (52)

represents the free dynamics of the two subsystems S;
(Hamiltonian H;) and S; (Hamiltonian H3). The inter-
action is assumed to be of the form

where A and B are any self-adjoint operators acting on
H, and H2, respectively. We emphasize that the above
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form (53) for H; has been chosen only for simplicity.
The most general case will be the subject of a future
paper [25].

It will be shown in this section that under suitable con-
ditions to be specified below the equation governing the
dynamics of the reduced probability distribution P;[1, ]
for the system S; takes the form of a Liouville master
equation [given by Eq. (101) below]. The following sub-
section A contains a precise formulation of the problem
and gives an overview of the procedure. In subsection
B we derive the short time behavior of the transition
probability on Hilbert space within the Markov approxi-
mation and using second-order perturbation theory. The
result enables us to derive the differential form of the
Chapman-Kolmogorov equation for P;, which turns out
to be a Liouville master equation. A detailed physical
discussion of the Liouville master equation is presented

in Sec. IV.

A. The Markov approximation
for the reduced system

We start by fixing an arbitrary time to and an arbitrary
time interval 7 = t —to,. We assume that (i) the system is
so small compared to the bath that its influence upon the
statistical properties of the bath can be neglected and (ii)
the probability distribution of the bath is invariant un-
der the time evolution of Ha, i.e., that P; is a stationary
solution of the Liouville equation for the bath. Further-
more, we assume that at time ¢o the system and the bath
are statistically independent. Under these assumptions
we can write

P, to] = Pi[th1,t0] ® Palta] - (54)

The different steps in the derivation of the reduced
system dynamics can be represented by the following
scheme:

Py, to] = P, t] 2> Py[th1,t] = Pi[ohs,t] , (55)

where we have used (as in Sec. II) the convention that
all distributions in the interaction representation carry
a tilde. In the first step we transform to the inter-
action representation. To this end, we use the initial
condition (54) and the definition of the tensor prod-
uct (38) and determine the interaction picture proba-
bility distribution P[’l/l,t] of the total system at time
t = to + 7. In the second step we employ our reduc-
tion formula (44) to obtain the reduced probability dis-
tribution P;[¢y,t] in the interaction representation. The
Markov approximation is invoked in order to determine
the short time behavior of P;[v1,t]. Finally, in the third
step we transform back to the Schrédinger representation
to obtain the reduced probability distribution P;[v1,t] in
the Schrodinger picture. The result immediately yields
the differential Chapman-Kolmogorov equation. Let us
now detail these steps indicated in the scheme (55).
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Step 1: Transforming to the interaction
representation

According to Eq. (28) the interaction picture proba-
bility distribution is given by

Py, t] = Ple Homy ] . (56)

Note that the interaction picture has been chosen in such

a way that it coincides with the Schrédinger picture at
t= to:

p[’(/],to] = P[wato] . (57)

Thus we have in view of Eq. (54) and definition (38) for
the tensor product

Py, to] = /D1/;1D1/~)I/D1/~)2D1/~);
6y — 1/;11/;2]131[’1517%]192[1/;2] . (58)

According to Eq. (31) the time evolution of this distri-
bution in the interaction picture is given by

Py, t] = P[U(t,to)%, to]
- / D§: DY / D2 DF; 8[U} (¢, to)$ — #19]
><P1[1/31,t0]P2[1Z12],

where

Ui(t, to) = T exp {——i A i dsH_r(s)} (59)

is the interaction picture time-evolution operator, 7 in-
dicates time ordering, and

Hy(s) = etHos [l e iHos (60)
is the interaction Hamiltonian in the interaction repre-

sentation.

Step 2: Performing the Markov approzimation

We now apply Eq. (44) to obtain the reduced proba-
bility distribution in the interaction representation:

Py, ] = / DyDy* / DY, DJ? / DD
X Zwaél[w;”z(s&’aw))z — 1]

x 8[US(t,to)y — P12 Pr[h1, to] Patha]

where w,, is defined as in Eq. (42). Invoking Eq. (4) for
the unitary operator Uj(t,to) and integrating over v we
obtain
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Bt = [ DiDY; [ DID;
X Z Wo by [w;1/2<90a|UI(t, t0)1/~11'l/~’2>2 — 1]

x P11, to) Pa[¥2],

where now

wa= [ dml(palUn(t to)rial® - (61)
Thus we have
Bilbn,t) = [ DD Tl s, tolPalin o] (62

where we have defined the functional kernel

T[41,t|91, to] /D1/;2D1/1~§

x> wadifwz /X (palUs(t, to)frda)e

— 1] P[] (63)

We now choose the following distribution to describe
the external heat bath:

Pyp2] = > padalthz — pal (64)
where
> pa=1, pa>0, (65)

and the complete orthonormal basis {4} in H2 is chosen
to be an eigenbasis of Hy,

Hypo = €apa - (66)

Note that the distribution (64) is a stationary solution
of the Liouville equation for the bath. Furthermore, we
have ignored phase factors in Eq. (64) in order to sim-
plify the notation. This is justified since P, only enters
through the tensor product, which is already phase in-
variant if one of its factors is (see the proof of the phase
invariance of the tensor product in Sec. II). Thus, if we
make sure that P; is phase invariant we may omit the
phase factors in the expression for P, (see also the dis-
cussion at the beginning of Sec. IV). On using Eq. (64)
the functional kernel (63) can be written in the form

T, tlP1,to] = D wappp 81[woy" Laphy —91] , (67)
a,B

where for each pair (a,3) we have introduced the linear
operator Log : H1 — H; defined by

Lag1 = (pa|Ur(t, to)Y195)2 (68)

and

wap = | Lasthll? - (69)
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Since
Zwag = Z’waﬂ =1 (70)
a B

we have
[ DirDw; Tl ti ol =1 (71)
Furthermore, we have Ur(to,tp) = 1 and thus
lim wap = Sap - (72)
It follows from this equation that
lim T, tlhr, to] = Safhs — 9] (73)

At this stage we are ready to state precisely the Markov
assumption that allows us to derive a closed equation for
the reduced system dynamics. Recall that any stochastic
process is defined by specifying the infinite hierarchy of
joint probability distributions (see, e.g., [2]). The Markov
approximation then means that this hierarchy of joint
probability distributions can be expressed completely in
terms of the (one-time) probability distribution and the
(two-time) conditional transition probability.

In the present case, the Markov assumption means that
the time-dependent wave function v;(z1,t) referring to
the subsystem S; becomes a stochastic process (in the
interaction representation) that is completely defined in
terms of its probability distribution P, [11,t] and the con-
ditional transition probability. In view of Eq. (62) it is
precisely the functional kernel T[4, t|1/31, to] that is to be
interpreted as this conditional transition probability of
the stochastic process (in the interaction picture). Thus
T[¥1, t|1/;1, to], as given in Eq. (67), represents the condi-
tional probability density for a transition from v at time
to to 9y at time t = to + 7 under the condition that at
time to the state v is given. Equation (71) means that
the total probability for a transition to any state is equal
to 1 for all time intervals 7, whereas Eq. (73) expresses
that for 7 = 0 the state 1/31 is prescribed.

The transition probability of any stochastic Markov
process obeys the Chapman-Kolmogorov equation. Un-
der certain conditions regarding the short time behavior
of the transition probability the Chapman-Kolmogorov
equation can be written as a differential equation, which
is the so-called differential Chapman-Kolmogorov equa-
tion [23]. We are now seeking for the differential
Chapman-Kolmogorov equation for the stochastic pro-
cess ¥1(z1,t). This can be done directly by looking for
a differential equation for the probability distribution it-
self since the transition probability is nothing but the
corresponding fundamental solution. In order to find a
differential equation for the reduced probability P;[v, ],
we shall derive in subsection B the short time behavior
of the transition probability T'[¢1,t|¥1,%0]. To be more
precise we assume that there exists a time scale 7 that
obeys

TBLTLTs (74)
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where 7p is of the order of the bath correlation time and
Ts is of the order of the relaxation time of the system. As
will be shown in Sec. III B we then obtain within second-
order perturbation theory and to first order (on the time
scale of the system dynamics) in the time interval =

AP, = P1[1/)1,t0 +T]

— Py[4q,to) = TAP;[p1,t0] , (75)

where A is a (time-independent) linear functional oper-
ator which has the form of a Liouville master operator
[see Eq. (99) in Sec. IIIB].

Step 3: Transforming to the Schrédinger
representation

The final step consists of transforming Eq. (75) to the
Schrodinger representation. To this end, we express the
Schrédinger picture probability distribution P; as

P11, to + 7] = Pi[e"1 7oy, to + 7] (76)

from which we obtain, to first order in 7,

APy = Py[tpy,to + 7] — Pith1, to)

d
= T"‘Pl[ Hisg to]ls=o + TAP; [1)1, 0]

5P 5P
zr/da:l{ 5. B — Vi 611»1}
1

+TAP1 ['lﬁl, to] . (77)

[

Dividing this equation by 7 and performing the limit
7 — 0 immediately yields the differential Chapman-
Kolmogorov equation for the reduced system dynamics.
Thus it remains to derive the structure of the linear func-
tional operator A from the short time behavior of the
transition probability T'[v1,t|¢1,t0]- This will be done
in the next subsection, where also the final form of the
Liouville master equation will be given [see Eq. (101)].

B. Short time behavior of the transition probability
and derivation of the Liouville master equation

In this subsection we shall derive in second-order per-
turbation theory the short time behavior of the transition
probability given by Eq. (67). We start by writing the
time-evolution operator in the interaction picture in sec-
ond order in Hy as

Uit to) = 1 —i/ ds A(s)B(s)
0
—/ ds/ ds'A(s + s')A(s)B(s + s')B(s),
0 0
(78)
where we have defined the interaction picture operators

A(s) = etH1s fge—tHrs | B(s) = etH2s gpe—iHzs (79)
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For the sake of technical simplicity we assume that the
time dependence of A(s) can be neglected over time scales
of the order of 7 (this assumption ensures that in the
quantum master equation, which is derived in Sec. IV,
only one Lindblad operator is present). The most general
case will be treated in a future paper [25]. Introducing
the quantities

Fap(r) = —i / ds(wal B(s)|ps)a: (80)
Go(7) = — / ds / " ds'(pal B(s + ') B(s)|ps)s
(81)
we have
Log¥ = {8ap + fapA + gap A%} 91 . (82)

We insert this expression into Eq. (69) and collect the
terms of zeroth, first, and second order. This yields

Wap = bap {1 = | fsl? ||A¢1l|f} + | fapl?l| A9 ][,
Yy

(83)

where we have ensured that the normalization (70) is
valid. On using Eq. (83) we find, to leading order in the
interaction,

faﬁ A1Z'1

-1/2 7
wa Laﬂ’lpl = T E—
s | fapl || A |1

fora#8 , (84)

_ . 1, - .
’wa;/2Laa¢1 = {1 + §“A¢1”:2[ ; |f‘ya|2 + gaaAz} ¢17

(85)

where we have assumed for simplicity that foo = 0.
The results (83), (84), and (85) enable us to determine

the short time behavior of the transition probability. To

this end, we decompose the transition probability T as

T = Tnondiag + Tdiag ) (86)
where
Tnondiag = Z ’waﬁpﬂ&l [’w;ﬁl/zLaﬁ'KZI - "/)1] ) (87)
o
Tdiag = Z waapa61 [w;al/zLaa'lZI - 1/’1} - (88)

Inserting Eqgs. (83) and (84) into Eq. (87) we obtain

Tnondiag = Z |fQB|2 ||A1;1“§p,3
o8

faB A'l/;l
6 - -~ . -
o [|faﬁ| A d’l] (59)

The argument of the § functional contains the pure phase
factor fog/|fap|- Recall that the functional kernel T acts
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only upon phase-invariant functionals. In this case the
above phase factor has no effect and can therefore be
omitted. Thus the argument of the é functional does
not depend upon a and B and the sum in front of the §
functional is just a multiplicative factor. We show in the
Appendix that this sum is given approximately by

Sl faslPrs Ty (90)
wp
where
—+o0o
Y= / @t palpal B(t)Blea) (91)

is the damping time of the system. Therefore, we can
write the nondiagonal part of the transition probability
as

|| A2

Equation (88) for the diagonal part of the transition
probability can be interpreted in the following way. For
each a the transition 151 — P = w;al/zLaad;l takes
place with probability weapa. In view of Eq. (85) the
size of these transitions is small for small 7 [in contrast
to the case a # (; see Eq. (84)]. It is thus justified to
replace for small 7 these transitions by a single transition,
which is given by the sum of the transitions weighted with
the probabilities pq,

"/;1 — P = Epaw;olz/zl’aa"/;l (93)

a

. A
Tnondiag ~ T'Y”Ad)l“% 61 |:—¢1— - 'lﬁl} . (92)

and which happens with probability
Zwaapa =1 _T’YHA’lZl”% . (94)
It is shown in the Appendix that
1 »
Z JaaPa = _ET(’Y + 2y ) ’ (95)

where v is defined in Eq. (91) and v’ is a constant real
number. Thus we obtain from Eq. (85)

Z paw;al/zLaa'lz;l

1 ~ 1 . =

= {1+ Gl = v+ )4}y (09
Inserting these results into Eq. (88) yields
Taing ~ (1 = 11 4%1]12)
1 7 112
><51 1+§T’)’||A’l/11“1
1 . 7
preriali—w] L on

Adding Egs. (92) and (97) we finally obtain
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; ; Aty
Ty, tld1, to] = || A%1||? 61 | ——t— —
(%1, |1, t0] = 7||AY1]|] 61 |:||Az/)1||1 1111]
(L= rollAdal2) 62 [~ {1+ Gralladill - Grly+7) 4 i~ . (98)

This equation represents the short time behavior of the transition probability. It is important to note that Eqs. (71)

and (73) remain true for the approximate expression (98).

By virtue of Eq. (98) it is now easy to demonstrate that the infinitesimal generator A introduced in Eq. (75) is in

fact a Liouville master operator. Inserting Eq. (98) into Eq. (62

AP, = Py, to + 7] — Pi[th1,to] = TAPy[31, 0]

) we obtain to first order in 7

= _% /dw1 {% (VA%1|[3 — (v + iv') A?) 1 Py (31, o) +c.c.}

+T/D¢1D’¢;; {W[¢1|TJ;1]P1[1/~’1J0] - W[’/;1|¢1]P1[1/’1at0]} ) (99)

where c.c. means complex conjugated and we have intro-
duced the transition functional

_Ady _¢1}

100
PoAT (100)

W (h1|91] = v||A¢1 ||} 6

Thus we see from Eq. (99) that the linear functional op-
erator A is a Liouville master operator (see the discussion
in Sec. IV).

Finally, we insert Eq. (99) into Eq. (77), divide the
whole equation by 7, and perform the limit 7 — 0. The
result is the Liouville master equation for the probabil-
ity distribution P; of the reduced subsystem S;. Since
any reference to the bath variables has been eliminated,
we omit in the following the index 1 from all quantities
except from the probability distribution P; (in order to
remind the reader that it is the reduced probability dis-
tribution). Furthermore, we write t instead of £o. The
Liouville master equation for the reduced probability dis-
tribution P; then takes the form

gl =i [a{ W@

é
~ 5o CWI @ fPilw

+f D1/3DT/;*{W[1/’|1/;]P1[1/~’J]

WP} (101)
Here the transition functional is defined by
- - A
w =4||AY||2 6 | —— — @ 102
[¥l¥] = ~[|Ay|| [llAwll ] (102)

and we have introduced the nonlinear and non-Hermitian
operator G(v) given by
7
G(¥) = Heat + 571 4911%Y (103)

where

, .
He=H+ %AZ - fgﬁ (104)
is a non-Hermitian linear operator. Note that according
to the above convention H denotes the system Hamil-
tonian. The Liouville master equation (101) constitutes

the central result of this paper.
IV. DISCUSSION

This section is devoted to a detailed discussion of the
physical meaning and implications of the Liouville mas-
ter equation (101) governing the dynamics of the reduced
probability distribution P;[t,¢] in the Markov approxi-
mation. We start by investigating the structure of the
Liouville master equation (101). The Liouville part of
this equation, which is given by the first line in (101),
describes the rate of change of P; induced by the flow cor-
responding to the nonlinear (deterministic) Schrodinger-
type equation

99
at

It is easily verified that the solution of Eq. (105) corre-
sponding to the initial condition ¥ (0) = o (||¢0]| = 1)
reads

= —iG($) = —iHew + 21| A% (105)

e—iHcrft,(/,O

YO = ety oo
Thus the time evolution of % is generated by the non-
Hermitian Hamiltonian H.g and the nonlinearity of
Eq. (105) has the effect of confining 1 to the unit sphere
in Hilbert space. The linear operator Heg [see Eq. (104)]
is the sum of the Hermitian Hamiltonian H of the system,
the non-Hermitian part —iyA%/2, which causes damping
due to the coupling to the heat bath, and an additional
Hermitian part 4’ 4%/2, which induces a shift of the en-
ergy levels of the system. This shift is referred to as the
Lamb shift (see, e.g., [7]).

The master part of our Liouville master equation given
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by the second line of Eq. (101) describes the rate of
change of Py, which is due to the discontinuous jumps

b= AL (107)
|| A%
occurring with probability per unit time given by
{rate of transition ¥ —» ¥} = ||A9||? (108)

Obviously, the master part in (101) has the typi-
cal structure of a gain-and-loss equation for the prob-
ability density P; of each state : The quantity
[ DYDP*W 3| Py[, t] describes the probability den-
sity per unit time for a transition from the state v into
any other state, whereas [ Dy Dy* W [4|] P[4, t] repre-
sents the probability density per unit time for a transi-
tion from any state into the state i). We emphasize that
Eq. (101) is a Liouville master equation in the sense of
classical probability theory and not an equation for the
density matrix. Furthermore, Eq. (101) should be care-
fully distinguished from the Pauli master equation [7,8],
which is an equation for the diagonal part of the relevant
statistical operator (in the sense of projection operator
techniques; see, e.g., [26,27]).

Summarizing, a typical trajectory 1 (¢) of the stochas-
tic process defined by our Liouville master equation can
be described as follows: The deterministic time evolu-
tion of v (t) according to the nonlinear Schrodinger equa-
tion (105) is interrupted by discontinuous jumps (107),
which happen with probability per unit time given by
Eq. (108).

Let us briefly check whether the Liouville master equa-
tion preserves the three basic conditions formulated in
Sec. II. Of course, the normalization of P; is conserved as
it is for any differential Chapman-Kolmogorov equation.
Also condition (7) holds for all times. This is obvious
from the fact that both the deterministic part of the time
evolution according to the nonlinear Schrédinger equa-
tion (105) and the transitions (107) conserve the norm
of the wave function and therefore the dynamics is con-
fined to the unit sphere in Hilbert space. Finally, the
phase invariance expressed by condition (8) is preserved
under the time evolution. This follows from the fact that
Pi[,t] = Pi[e*X1, 1] is a solution of the Liouville master
equation if P;[¢,t] is a solution of this equation.

Thus it has been shown that the reduced dynamics of
an open quantum system yields, employing the basic pos-
tulates formulated in Sec. II and the Markov approxima-
tion, a well-defined and unique stochastic jump process
in the space of rays of the underlying Hilbert space. It
is important to note that the realizations of the stochas-
tic process defined by our Liouville master equation are
very similar to those generated by the piecewise deter-
ministic quantum jump methods [13-17]. Obviously, the
transitions (107) and the corresponding transition rates
are the same at least for the case of only one Lindblad
operator, which has been studied here. As far as the
continuous part of the evolution is concerned, the above
mentioned stochastic methods work with a linear time
evolution generated by the non-Hermitian Hamiltonian
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H.g. Since we have confined the dynamics to the unit
sphere in Hilbert space our continuous time evolution is
of course nonlinear. The difference between both repre-
sentations is thus merely a different normalization of the
wave function [see Eq. (106)].

The dynamic equation of the quantum state diffu-
sion model [10,11] is a nonlinear stochastic Schrodinger-
type equation, which in turn is equivalent to a certain
functional Fokker-Planck equation for the corresponding
probability distribution on Hilbert space [12]. The con-
nection of the Liouville master equation derived above to
this representation in terms of a stochastic Schrédinger-
type equation can be established by performing the
diffusion-noise approximation [2] of the Liouville master
equation. An example for such a diffusion approximation
is given in Ref. [18].

As is well known from the general theory of stochastic
processes, the formulation of a stochastic Markov pro-
cess by means of the corresponding differential Chapman-
Kolmogorov equation immediately leads to the whole set
of equations of motion for the n-point correlation func-
tions of the stochastic variables. Since the Liouville
master equation (101) is nonlinear it is to be expected
that, in general, the dynamic equations for the correla-
tion functions of the stochastic process v¥(z,t) are not
closed and form a coupled hierarchy of equations (as it is
the case, e.g., for a master equation formulation of turbu-
lence [28]). However, as will be shown next the stochastic
process defined by our Liouville master equation has the
interesting property that the equation of motion for its
two-point correlation function

pe(z,z) = (P(2)P" (')

= [Deps s @Al (109)
is closed and identical to the general Lindblad
form [29,30] for the equation of motion of the statistical
operator. In order to prove this property we differentiate
Eq. (109) with respect to time and invoke the Liouville
master equation to express the time derivative of P;. The
rate of change of p; is then found to be the sum of two
parts. The first part describes the rate of change that
is due to the smooth motion according to the nonlinear
Schrédinger equation (indicated by an index £) and can
be written as

8 * !
5|, (V@)

= —i[He ((2)9" (z')) — (¥ (2)9" (2')) Hig
+y (149" (z)¢* ("))
The second part represents the rate of change of (109)

that is induced by the discrete jumps (indicated by an
index M). This part takes the form

O (@)

Bt | g

= vA®@(2)¥" (2") A — v([|A%]*p(z)p* («')).
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Adding both parts we see that the four-point correlation
functions on the right-hand sides cancel and we obtain
a closed equation of motion for the two-point correlation
function:

2 @) @)
= —ilHen (¥(2)$" (2) — ($(e)w" (=) Hlg]
+rA (2)y* (2)) A
In view of definition (109) this equation is identical to
9

,Yl
5Pt —1 [H + EAZ,Pt]

(110)

1 1
+v (APtA - §A2Pt - EptAz)

This equation, which is written in the general Lindblad
form, is identical to the so-called quantum master equa-
tion [8,31] for the statistical operator for the open system
under study (see, e.g., [7]). Thus we have demonstrated
that the quantum master equation for the reduced sys-
tem dynamics of an open quantum system can be derived
as the equation of motion for the two-point correlation
function of the stochastic process defined by our Liou-
ville master equation. The fact that only one Lindblad
operator A is present in Eq. (110) is due to our special
ansatz (53). It is, however, easy to generalize the deriva-
tion presented in Sec. III to include the general case of
any number of Lindblad operators. This more technical
derivation will be given in a future paper [25].

V. SUMMARY

Let us summarize the reasoning and the main results of
this paper. The ensemble definition (1) for the statistical
operator naturally leads to the introduction of a probabil-
ity distribution P[] on Hilbert space. Since according
to quantum mechanics a state is described by a ray in
Hilbert space, we made more precise this idea by con-
structing probability distributions on the space of rays,
that is, on projective Hilbert space. Within this formula-
tion the wave function ¢ becomes a random variable and
the statistical operator appears as the two-point correla-
tion function of 1. For closed systems the different mem-
bers of the ensemble evolve according to Schrodinger’s
equation and consequently the dynamics of the ensemble
is formulated in terms of a Liouville equation, which is
a first-order functional equation for the time-dependent
probability distribution P[¢,t].

When dealing with an open system that is considered
to be a part of some larger system two important con-
structions have to be introduced. First, it is important
to define precisely the probability distribution for a com-
bined system S that is made up of two statistically inde-
pendent subsystems S; and S», i.e., to define the prob-
ability distribution on the tensor product of the Hilbert
spaces of the subsystems. Second, given a probability
distribution on the total Hilbert space it is to be clarified
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what is meant by the reduced probability distribution
on the Hilbert space of one of the subsystems. The cor-
responding equations for these constructions have been
worked out in Sec. II.

On the basis of the general formal setting developed in
Sec. II it was possible in Sec. III to derive the differen-
tial Chapman-Kolmogorov equation, which governs the
dynamics of open quantum systems within the Markov
approximation. This was done by analyzing, in second-
order perturbation theory, the short time behavior of
the transition probability, i.e., the conditional probabil-
ity density for the transitions among the rays in Hilbert
space. It turns out that the differential Chapman-
Kolmogorov equation has in fact the form of a Liouville
master equation. The Liouville part of this equation de-
scribes the continuous flow of a nonlinear, dissipative,
and norm-conserving Schrédinger equation. The master
part defines a discontinuous stochastic jump process. Fi-
nally, we have shown that the equation of motion for the
two-point correlation function of the stochastic process
defined by the Liouville master equation is closed and
exactly of the form of the quantum master equation for
the reduced density operator.

Employing a formulation of ensembles of quantum sys-
tems in terms of probability distributions on the under-
lying projective Hilbert space, we have shown that the
dynamics of open quantum systems can be described by
a unique classical stochastic process on projective Hilbert
space. This has been achieved by starting from a general
microscopic description of the interaction between sys-
tem and reservoir. Since the realizations of the stochastic
process correspond to the trajectories generated by the
Monte Carlo wave function simulation method and by
the quantum trajectory method with jump-type evolu-
tion, the present derivation confirms the validity of these
approaches and shows how to formulate them within the
mathematical formalism of probability theory.

APPENDIX: PROOF OF EQS. (90) AND (95)

In order to prove Eq. (90) we use Eq. (80) to find

fuslPpo = [ ds [ ds'(B(s)B(s)) ., (A1)
S 1feol'n [as [

where

(B(5)B(s")) =) PalpalB(s)B(s')|0a) (A2)

denotes the correlation function of B obtained by tracing
over the bath variables. By virtue of the invariance of the
bath under the time evolution generated by H, we have

(B(s)B(s)) = (B(s — ) B) (A3)

and therefore
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2 _ T T , .
glfaﬂl pa—A ds/o ds'(B(s — s')B)

=/Ofdt’ /_:_t dt(B(t)B) ,

where we have transformed to new time variables ¢t =
s —s', t' = s'. Since 7 > 7p the correlation function
vanishes very fast outside a small strip along the ¢ axis.
Thus we can approximate

(A4)

T “+oo
| fa |2pﬁ ~ dt’ dt(B(t)B) =71y , (A5)
Slseolea = [ [

and Eq. (90) is proved. Similarly, we find
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T —t'
S gocra =~ [ @t [ auBB) (46)
. 0 0
On using the same argument as above we obtain
T +oo
> GaaPa ~ — / dt’ / dt(B(t)B)
= 0 0
+oo
— / dt(B(¢)B) (A7)
0
We have
+oo 1
/ dBWB) = 5 (v +i) (A8)
0

where '/2 denotes the imaginary part of this integral.
Thus we finally obtain

1 .
Zgaapa = _57—(7 + 7’7,) ) (Ag)

which is Eq. (95).
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